Integration Of Multiple Mapping Sensor Data For The Purpose of Creating GIS-Ready 3D Models Of The Built Environment.

Hlanganani Luthuli University of Cape Town Programme : Msc Eng in Geomatics Supervisor : Assoc Prof Julian Smit

Integration Of Multiple Mapping Sensor Data For The Purpose of Creating GIS-Ready 3D Models Of The Built Environment.

Hlanganani Luthuli Email : <u>lthhla001@myuct.ac.za</u> Phone No: 067 856 3555 LinkedIn :www.linkedin.com/in/hlangananiluthuli-1454256a

Introduction

Research Back Ground and Motivation

01

The research is aimed at investigating the different opportunities and challenges in the process of integrating data from multiple sensor for the process of mapping the built environment.

Supporting Research

02

Current research, shows that there is a growing trend in the use of multiple sensor data, such as oblique imagery, mobile laser scanners and other sensors in the process of obtaining data in municipal areas. (Poli et al, 2017)-Back this.

The Need for this Research

03

This research is necessary because it aims at quantifying the challenges that can be encountered in the process of data integration, but also see how the results can be used in a productive manner in a GIS environment.

Goals & Objectives of the Thesis

04

 The aim of research was to understand the problems that occur in integrating data from different sensors.
 Explored efficient ways of cleaning and classifying data.
 Explore 3D Model LoD that can be obtained.

Literature Review - Overview

Pixel Level/Data Level	This research is based on the Integration of raw data (Point Cloud), into a new 'robust' dataset. Unlike – Feature Level and Decision Level Integration.	Point Cloud Data Integration
GIS-Ready 3D Building Models	This research also focused on how the point cloud data could be used to creating GIS-Ready 3D models with LoD2 that can be used for various	

The different methods of Integrating point cloud datasets. (ICP registration and Manual Registration of Point Cloud using Common Details).

a

Methodology

Research Approach :

A qualitative and quantitative at understanding the process of data integration.

Methods Used:

ICP and Manual Point Cloud registration.

Point Cloud Filtering and Classification

Automatic 3D Modeling.

Excel and Python Based Analysis.

Cloud to Cloud Analysis (RMS values and C2C Distances)

Comparing 3D Models with GE 3D Models.

Comparing the Dimensions of the 3D Models with existing GE Models.

Case Study Area

Area 1: Buildings Around Adderley Street

Area 2: Buildings Around Bree Street

3D Model of this Building is later on Compared with Google Earth Model

Images are sourced from : CoCT – City Map Viewer.

ree SlideSalad PowerPoint Template

Methodology

Point Cloud Integration

- Manual Alignment of Point Cloud, by means of Common features.
- ICP Alignment.
- Comparison.

Point Cloud Filtering

 Application of Noise Filter and the SOR filter on the integrated Data.

Point Cloud Classification.

- Python based Point Cloud Classification.
- Cloud Compare
 Classification.
- ArcGIS Cloud
 Classification.
- LasTools Classification

3D Modelling

- Point Cloud Based –Plane
 Fitting 3D Modeling In
 ENVI.
- Creation of LoD2 Models
 that are GIS Ready.
- Comparison of 3D Models
 with Google 3D Models.

ree SlideSalad PowerPoint Template

Point Cloud Alignment Results.

Point Cloud Manual Alignment

Point Cloud Manual Progress

	Manual Alignment	ICP Alignment
1	1,543	1,190
2	0,948	0,656
3	0,603	0,372

No of Iterations	Overlap	Final RMS(m)
10	30%	0,079
20	30%	0,074
50	30%	0,006
100	30%	0,006
150	30%	0,006
200	30%	0,006

Free SlideSalad PowerPoint Template

Point Cloud Filtering Analysis and Results

Unfiltered Point Cloud

Point Cloud Classification Results

Point Cloud 3D Modelling Results

Application Domain and Additional Information

The 3D Models that were obtained in This research can be used in a variety of Applications in a GIS environment Such as :

-Town Planning (Height Restrictions) -Cadastral Applications -3D Cadastre (Registration of rights)-This Link Contains an example. (https://3d.bk.tudelft.nl/news/2016/03/21/3DKadaster.ht ml)

-Energy Related Applications-Solar Potential -Visualization Related Applications (BIM)

The Different Levels of Detail in 3D Modelling

3D Models Compared to Google Earth Models

References

(Adeleke, 2018)

Adeleke, A., 2018. *Web-Based GIS Modelling Of Building integrated Solar Photovoltaic System For The City Of Cape Town*. PhD. University of Cape Town.

(Poli et al., 2017)

Poli, D., Moe, K., Legat, K., Toschi, I., Lago, F. and Remondino, F., 2017. USE OF VERTICAL AERIAL IMAGES FOR SEMI-OBLIQUE MAPPING. *ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, XLII-1/W1, pp.493-498

(Ahmad Fuad, Yusoff, Ismail and Majid, 2018) Ahmad Fuad, N., Yusoff, A., Ismail, Z. and Majid, Z., 2018. COMPARING THE PERFORMANCE OF POINT CLOUD REGISTRATION METHODS FOR LANDSLIDE MONITORING USING MOBILE LASER SCANNING DATA. *ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, XLII-4/W9, pp.11-21.

(Biljecki, 2017)

Biljecki, F., 2017. *LEVEL OF DETAIL IN 3D CITY MODELS*. PhD. Delft University of Technology (TU Delft).

Sslidesalad

ree SlideSalad PowerPoint Template

QUESTIONS

Free SlideSalad PowerPoint Template

S slidesalad

Copyright (C) SlideSalad.com All rights reserved

THANK YOU !

Integration Of Multiple Mapping Sensor Data For The Purpose of Creating GIS-Ready 3D Models Of The Built Environment.

Hlanganani Luthuli

Contact Details :

Email : <u>lthhla001@myuct.ac.za</u>

Phone No: 067 856 3555

LinkedIn :www.linkedin.com/in/hlanganani-luthuli-1454256a